

Advancing Sustainability of Process Industries through Digital and Circular Water Use Innovations

Water Integration

Design of a Wastewater Regeneration System

Dr Athanasios Angelis-Dimakis, University of Huddersfield

AquaSPICE Summer School 2024

The AquaSPICE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958396.

- Process similar to the design of water reuse networks
 - Regeneration Reuse
 - Regeneration Recycle
- Divide the processes into two categories:
 - Those that must definitely use freshwater
 - Those that can accept a concentration greater than what regeneration can achieve
- Design is performed in two individual regions; one using freshwater and one using regenerated water

- An industrial unit has 3 water consuming operations. The management is considering installing a regeneration process which can achieve an outlet concentration of 5 ppm.
- Design four different water use schemes and find which one consumers the lowest amount of freshwater:
 - Freshwater only
 - Water reuse only scheme, without any regeneration
 - Regeneration reuse scheme
 - Regeneration recycling scheme

No	Contaminant Mass (g/h)	Maximum Inlet Concentration (ppm)	Maximum Outlet Concentration (ppm)	Limiting Water Flowrate (t/h)
1	4000	0	200	20
2	5000	100	200	50
3	9000	100	400	30

Freshwater Use Only

Calculation of freshwater used

Freshwater Use Only

• Calculate the amount of freshwater used in each process by setting the inlet concentration equal to 0.

No	Contaminant Mass (g/h)	Inlet Concentration (ppm)	Maximum Outlet Concentration (ppm)	Freshwater Flowrate (t/h)
C1	4000	0	200	20
C2	5000	0	200	25
C3	9000	0	400	22.5

Total Freshwater Use: 67.5 t/h

Freshwater Use Only

Process Flow Diagram

Total Freshwater Use: 67.5 t/h

Draw the Limiting Water Profiles for the three different operations

Calculate the concentration intervals

No	Maximum Inlet Concentration (ppm)	Maximum Outlet Concentration (ppm)	Limiting Water Flowrate (t/h)	Contaminant Load (g/h)
C1	0	100	20	2000
C2	100	200	100	10000
C3	200	400	30	6000

$$\Delta m_{C1} = m_{W1} \times \Delta C_1 = 20 \times (100 - 0) = 2000 \, g/h$$

$$\Delta m_{C2} = m_{W1} \times \Delta C_2 = 100 \times (200 - 100) = 10000 \, g/h$$

$$\Delta m_{C3} = m_{W1} \times \Delta C_3 = 30 \times (400 - 200) = 6000 \, g/h$$

Draw the composite curve and the minimum flowrate water supply line

Set up the design grid

Process Flow Diagram

Total Freshwater Use: 60 t/h

Steps to Design a Regeneration Reuse System

- Find the pinch point
- Divide the processes in "freshwater only" and "regenerated water"
- Split processes to evenly distribute mass load below the "reuse only" pinch point
- Draw the composite curve and calculate the minimum flowrate for the two design regions
- Design the wastewater regeneration reuse system

Divide the processes into "freshwater" and "regenerated water"

- Two processes can accept regenerated water (2 and 3) and one process must use freshwater (1)
- Contaminant mass loads for each process below pinch
 - Process 1: $\Delta m_{C1BP} = mW_{1} \Delta C_1 = 20 \times (200 0) = 4000 \text{ g/h}$

• Process 2:
$$\Delta m_{C2BP} = mW_2 \hat{X} \Delta C_2 = 50 \times (200 - 100) = 5000 \text{ g/h}$$

• Process 3: $\Delta m_{C3BP} = mW_3 \stackrel{\frown}{_{\times}} \Delta C_3 = 30 \times (200 - 100) = 3000 \text{ g/h}$

Evenly distribute mass load

To evenly distribute mass loads processes 1 and 3 will get freshwater whereas process 2 will receive regenerated water

No	Contaminant Mass (g/h)	Maximum Inlet Concentration (ppm)	Maximum Outlet Concentration (ppm)	Limiting Water Flowrate (t/h)	
Freshwater					
1	4000	0	200	20	
3	9000	100	400	30	
Regenerated Water					
2	5000	100	200	50	

Draw the Limiting Water Profiles for the two design regions

Calculate the concentration intervals for both design regions

Design Region I - Freshwater

No	Maximum Inlet Concentration (ppm)	Maximum Outlet Concentration (ppm)	Limiting Water Flowrate (t/h)	Contaminant Load (g/h)
C1	0	100	20	2000
C2	100	200	50	5000
С3	200	400	30	6000

Design Region II – Regenerated Water

No	Maximum Inlet	Maximum Outlet	Limiting Water	Contaminant Load
	Concentration (ppm)	Concentration (ppm)	Flowrate (t/h)	(g/h)
C1	100	200	50	5000

Draw the composite curve and the minimum flowrate water supply line

Design Region I - Freshwater

No	Maximum Inlet Concentration (ppm)	Maximum Outlet Concentration (ppm)	Limiting Water Flowrate (t/h)	Contaminant Load (g/h)
C1	0	100	20	2000
C2	100	200	50	5000
С3	200	400	30	6000

Design Region II – Regenerated Water

No	Maximum Inlet	Maximum Outlet	Limiting Water	Contaminant Load
	Concentration (ppm)	Concentration (ppm)	Flowrate (t/h)	(g/h)
C1	100	200	50	5000

Remember: The management is considering installing a regeneration process which can achieve an outlet concentration of 5 ppm.

Draw the composite curve and the minimum flowrate water supply line

Set up the design grid for Design Region I – Freshwater Use

Set up the design grid for Design Region II – Regenerated Water Use

Process Flow Diagram

Total Freshwater Use: 35 t/h

Steps to Design a Regeneration Recycling System

- Divide the processes in "freshwater only" and "regenerated water"
- Draw the composite curve and calculate the minimum flowrate for the two design regions
- Design the wastewater regeneration recycling system

Distribute the processes based on the specifications

In this case, one process must use freshwater (Process 1), whereas the other two can use regenerated water

No	Contaminant Mass (g/h)	Maximum Inlet Concentration (ppm)	Maximum Outlet Concentration (ppm)	Limiting Water Flowrate (t/h)	
	Freshwater				
1	4000	0	200	20	
Regenerated Water					
2	5000	100	200	50	
3	9000	100	400	30	

Draw the Limiting Water Profiles for the two design regions

Calculate the concentration intervals for both design regions

Design Region I – Freshwater

No	Maximum Inlet	Maximum Outlet	Limiting Water	Contaminant Load
	Concentration (ppm)	Concentration (ppm)	Flowrate (t/h)	(g/h)
C1	0	200	20	4000

Design Region II – Regenerated Water

No	Maximum Inlet Concentration (ppm)	Maximum Outlet Concentration (ppm)	Limiting Water Flowrate (t/h)	Contaminant Load (g/h)
C1	100	200	80	8000
C2	200	400	30	6000

Draw the composite curve and the minimum flowrate water supply line

Design Region I – Freshwater

N	Maximum Inlet	Maximum Outlet	Limiting Water	Contaminant Load
	Concentration (ppm)	Concentration (ppm)	Flowrate (t/h)	(g/h)
C 1	0	200	20	4000

Design Region II – Regenerated Water

No	Maximum Inlet Concentration (ppm)	Maximum Outlet Concentration (ppm)	Limiting Water Flowrate (t/h)	Contaminant Load (g/h)
C1	100	200	80	8000
C2	200	400	30	6000

Draw the composite curve and the minimum flowrate water supply line

Set up the design grid for Design Region I – Freshwater Use

Set up the design grid for Design Region II – Regenerated Water

Process Flow Diagram

Total Freshwater Use: 20 t/h

Scheme	Freshwater Use	Water Savings	New Unit
Freshwater Only	67.5 t/h	-	No
Water Reuse	60 t/h	11.1%	No
Regeneration Reuse	35 t/h	48.1%	Yes
Regeneration Recycling	20 t/h	70.4%	Yes

- Alwi, S, Varbanov, P.S., Manan, Z.A. & Klemes, J.J. (2014). Process integration and intensification: saving energy and resources, De Gruyter.
- Smith, R. (2016), Chemical process design and integration, 2nd Ed. Wiley Blackwell, Chichester, West Sussex.